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Chapter 12

Novel Strategies for Genetically Modified
Organism Detection

Alexandra Placido’?, Joana S. Amaral’3, Joana Costa’, Telmo J.R. Fernandes’, Maria Beatriz P.P. Oliveira’,
Cristina Delerue-Matos?, Isabel Mafra’

IREQUIMTE, Departamento de Ciéncias Quimicas, Faculdade de Farmdcia, Universidade do Porto, Porto, Portugal; 2REQUIMTE, Instituto Superior
de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal; *ESTiG, Instituto Politécnico de Braganca, Braganga, Portugal

INTRODUCTION

The introduction of genetically modified organisms (GMO) with desirable agronomic traits has allowed improving the
yield and quality of crops, as well as the nutritional properties of plants. In line with health concerns and with political
and economic interests, a legal basis has been established at global scale to facilitate the production/commercialization of
GMO. To comply with most legislation requirements, great efforts have been devoted to the development of highly reliable
methods for GMO detection, identification, tracing, and quantification. Currently, polymerase chain reaction (PCR)-based
methods are generally used for GMO screening and identification, being real-time PCR the technique of choice for GMO
quantification (Mafra, 2011). However, to face the steadily increasing cultivation area of GM crops and the number of (un)
authorized GM events, efforts have been focused on the development of simple, low-cost, and user-friendly tools to rapidly
generate data on GMO detection.

The interest in DNA biosensors (genosensors) for GMO detection has been growing due to their possibility for automa-
tion and microfabrication based on simple and portable detection systems, such as visual or electrochemical devices. One of
the major challenges in GMO analysis concerns the simultaneous detection of several events. With this goal, applications of
DNA microarrays have emerged as new multitarget platforms for the simultaneous detection of several construct elements,
allowing high-throughput GMO diagnostics (Michelini et al., 2008).

One major limitation of applying genosensors or microarrays for GMO testing is the need for previous DNA amplifica-
tion owing to the required sensitivity of target transgenic elements in a background of genomic plant DNA. This is cur-
rently performed by PCR technology that, despite its numerous advantages, has some limitations such as the lack of true
multiplexing properties and the need of specific equipment. To mitigate the drawbacks linked to PCR technology, alterna-
tive nucleic acid amplification methods with promising characteristics have been developed and applied to GMO testing
(Morisset et al., 2008a). Loop-mediated isothermal amplification (LAMP) methods have emerged as promising amplifica-
tion alternatives to PCR, without the need for thermal cycling equipment.

This chapter intends to provide an overview on the most recent advances regarding the novel biosensing and alternative
amplification technologies applied to GMO testing.

BIOSENSORS

DNA biosensors (genosensors) are analytical devices that result from the integration of a sequence-specific probe (usually
a short synthetic oligonucleotide) and a signal transducer. Therefore, the presence of GMO is detected by hybridization of
introduced DNA (target DNA sequence) with GMO-specific probes that are immobilized onto the transducer surface. In
general, the genosensor construction involves the following steps: (1) immobilization of the DNA probe onto the electrode
surface; (2) hybridization with the target sequence; (3) evaluation of labeling marks and detection methods (Lucarelli et al.,
2004; Manzanares-Palenzuela et al., 2015a). The optimization of these steps is critical to improve the performance of these
devices. Transducers that can detect nucleic acid hybridization are classified into electrochemical, optical (surface plasmon
resonance, SPR), and piezoelectric (quartz crystal microbalance, QCM).

Genetically Modified Organisms in Food. http://dx.doi.org/10.1016/B978-0-12-802259-7.00012-9
Copyright © 2016 Elsevier Inc. All rights reserved. 119
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Electrochemical Biosensors

Electrochemical biosensors are based on the electroactive analyte oxidation or reduction on the working electrode surface,
which is submitted to a fixed or varying potential. The electrochemical signal is generated by the variation on the electron
fluxes, being measured by an electrochemical detector. There are several platforms for DNA electrochemical sensing: direct
and indirect DNA electrochemistry, DNA-specific redox indicator detection, nanoparticle-based electrochemistry amplifi-
cation, and DNA-mediated charge transport (conductive polymers, specific redox reporters, intercalators, redox dyes, and
nanoparticles) (Drummond et al., 2003; Viswanathan et al., 2009). In Figure 1, an example of an electrochemical DNA
platform to detect Roundup Ready® (RR) soybean is presented.

Identical to optical biosensors, most of the electrochemical sensors target expression elements, namely 35S promoter
and nos terminator, making them excellent alternatives for GMO screening (Table 1). Electrochemical biosensors targeting
other sequences have also been described, namely pat (inducing tolerance to glufosinate herbicide), cp4epsps (inducing
tolerance to glyphosate herbicide), crylA(b) (inducing insect resistance) and nptlI (responsible for antibiotic resistance)
genes, among others. All the systems have presented high specificity and sensitivity, highlighting their relevance for GMO
analysis.

l. Single assays
(A) Recognition U (B) Measurement

TMB 4 + H,0,

Q 5a
TMBoy + H,0
e g 6a
TMB ey

’ Signal output
N

‘ Streptavidin-coated magnetic beads

Biotinylated capture probe for RR or Lec

Target sequence (RR or Lec) !
Signaling probe labeled with FITC or Dig (for RR or Lec, respectively) 1 :

i Chronoamperometry :

p Anti-FITC or Anti-Dig-POD Fab conjugates 4 i

60

. Multiplex assay T

TMB+H,0,
5a
"msax +H,0

Biotinylated capture probe for Lec

; Biotinylated capture probe for RR
‘_\"’. Lec Target sequence
RR Target sequence

Signaling probe labeled with Dig i

Signaling probe labeled with FITC e L : t - :
# Anti-FITC POD Fab conjugate i Chronoamperometry : i Differential Pulse :
& Anti-Dig POD Fab conjugate H i : Voltammetry

FIGURE 1 Scheme of the (I) single assays (valid for either RR or Lec detection) and (II) multiplex assay (simultaneous detection of RR and Lec). The
assays are divided into two steps, recognition (A) and measurement (B): (1) attachment of capture probe(s) to the surface of magnetic beads; (2) homo-
geneous hybridization between a labeled-probe and target sequence; (3) heterogeneous hybridization with capture probe bound to the beads; (4) addition
of the Fab-enzyme conjugate; (5a—6b) enzymatic reactions occurring after adding the enzymatic substrate (TMB/a-NPP); (6a) chronoamperometric mea-
surement of TMBox reduction at the electrode surface; (6b) voltammetric measurement of naphthol oxidation current at the electrode surface. Reprinted
with permission from Manzanares-Palenzuela et al. (2015b). Copyright 2015, Elsevier.
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Optical Biosensors

Optical biosensors offer a number of advantages like high sensitivity and specificity, isolation from electromagnetic inter-
ference, possibility of multiplexing by carrying signals of different wavelengths for multiparameter detection, compact
design and minimally invasive, and the possibility of remote monitoring in hazardous/inaccessible spots (Narsaiah et al.,
2012). Among optical biosensors, the SPR-based DNA biosensor has been applied to GMO detection.

SPR detects and quantifies changes in the refractive index at the metal-liquid interface caused by the hybridization of
the target DNA with the immobilized probe on sensor surface. Changes in reflectivity give a signal (increase) that is propor-
tional to the mass of the target bound to the surface. SPR is considered a label-free method because it can detect the binding
of the analyte on a surface without any label (Sassolas et al., 2008). Since the first application of an SPR-based biosensor
for GMO detection (Mariotti et al., 2002), other works have been reported and are summarized in Table 2.

Most of the described SPR biosensors target gene expression elements, promoter 35S (cauliflower mosaic virus 35S) and
terminator nos (Agrobacterium tumefaciens nopaline synthase), making them excellent screening methods. With an increased

TABLE 2 Optical Biosensors for GMO Detection

Target
Sequence/ Detection Reproducibility Linearity
Methods Gene Application Limit (cv) Range (nM) References
SPR Biacore P35S, T-NOS CRM from 1nM <3% 1-125nM Mariotti et al.
X™ soybean powder 1-100nM (2002)
(2% RR)
P35S Synthetic oli- 2.5nM <5% 225nM Giakoumaki
gonucleotides, etal. (2003)
CRM from
soybean powder
(2% RR), pBI121
plasmid, maize
from animal feed
P35S GM maize 2.5nM 1% 0-25nM Wang et al.
(2004a)
P35S Synthetic oligo- 2.5nM 1% 0-25nM Wang et al.
nucleotides, and (2004b)
GM maize
SPR Spreeta™ P35S GM maize 10nM 6% - Wang et al.
(2004a)
Nanoparticle- P35S, T-NOS CRM from 0.16 nM 2.6-12.2% (SD) 0-25 fmol Kalogianni et al.
based DNA soybean powder (0.8fmol) (2006)
biosensor (0,0.1,0.5, 1,2
and 5%)
Electrochemi- P35S, T-NOS Tobacco 5nM = 5-5000 nM Zhu et al. (2010)
luminescence
Chemilu- Epsps, nptll, Soybeans, red 0.2% (epsps), 9.7% (epsps); 0-10% Jang et al. (2011)
minometric pat pepper leaves, 2.16% 15.4% (nptll),
immunosensor rice leaves (nptll), 2.6% 6.4% (pat)
array (pat)
SERS spectros- cryTA(b), Rice 0.1 pg/mL - 0.1pg/ Chen et al.
copy crylA(c) mL-10ng/mL (2012a)
P35S Bt176 maize 11nM - 25-100nM Guven et al.
(2012)

pat, phosphinothricin N-acetyltransferase (PAT) enzyme; P35S, cauliflower mosaic virus promoter, epsps, 5-enolpyruvulshikimate-3-phosphate synthase;
CRM, certified reference material; Cry1A(b), CryTA(c) or Cry2A2, delta-toxin, CV, coefficient of variation; nptll, neomycin phosphotransferase Il enzyme;
pBI121, expression vector for plant transformation; SD, standard deviation; SERS, surface-enhanced raman scattering; SPR, surface plasmon resonance;
T-NOS, Agrobacterium tumefaciens nopaline synthase terminator.
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level of specificity, other SPR-based sensors have also been developed to target gene coding regions, such as CrylAb delta-
endotoxin or cp4epsps, among others. Most of the systems allow the detection of raw plant material, such as certified reference
materials (CRM; e.g., maize, soybean, cotton) or synthetic oligonucleotides, with high sensitivity and specificity (Table 2).

Piezoelectric Biosensors

QCM is a simple technique with high resolution, based on the piezoelectric effect that consists of applying mechanical
forces on the surface of a piezoelectric material. This causes the appearance of electrical charges, but the reverse effect
also occurs, which corresponds to the mechanical deformation by the application of an electric charge. Piezoelectric quartz
crystal devices are very useful for direct measurements of biologically active molecules without the need for labeling
or use of additional chemicals. In QCM sensors, the gold surface of the quartz crystal is coated with the DNA probe(s)
able to hybridize with the complementary target(s) present in the analyte. Immobilization strategies of probes via thiol
(Karamollaoglu et al., 2009; Mannelli et al., 2003a,b), biotin (Mannelli et al., 2003a,b; Minunni et al., 2001), and amino
groups (Minunni et al., 2001) have been used for GMO screening. The QCM sensors have been applied to detect the 35S
promoter and nos terminator in RR soybean (Mannelli et al., 2003b), the coding regions for Cry1A(b) in maize (Passamano
and Pighini, 2006), and epsps in RR soybean (Stobiecka et al., 2007). These devices have shown promising results for real-
time, label-free, and direct detection of DNA for GMO analysis (Karamollaoglu et al., 2009).

MICROARRAYS

The use of DNA microarrays has greatly increased as they offer promising multitarget platforms able to detect numerous
DNA sequences. Additionally, these methods can be reusable and allow continuous, fast, sensitive, and selective detection
of DNA hybridization. DNA microarrays (also called gene-chips, DNA-chips, or biochips) usually rely on the immobiliza-
tion of a single-stranded DNA probe onto a surface to recognize its complementary strand. They result from the assembly of
numerous (up to a few 1000) DNA biosensors onto the same detection platform, which consist of glass supports containing
specific oligonucleotide-capture probes immobilized on their surface. They allow parallel detection and analysis of the pat-
terns of expression of thousands of genes in a single assay, which is possible because of the high degree of miniaturization,
offering an advantage over other methods (Elenis et al., 2008).

Several microarray platforms have been proposed for GMO analysis, with the possibility of simultaneously detecting
several expression elements (e.g., P-35S, T-NOS) and/or specific genes (e.g., nptll, cp4epsps, crylA(b)), allowing the
retrieval of a great amount of information in a single assay (Bai et al., 2007, 2010; Dobnik et al., 2010; Lee, 2014; Li et al.,
2015; Morisset et al., 2008b; Shao et al., 2014).

ALTERNATIVE DNA AMPLIFICATION METHODS

Although perfectly feasible in most well-equipped laboratories, PCR cannot be performed in the field. To overcome this
drawback, different isothermal amplification techniques have been attempted avoiding the need of thermal cycles. So far,
most of the published methodologies relying on the isothermal amplification of DNA have been developed for molecular
diagnosis purposes, such as pathogenic bacteria and virus identification (Gill and Ghaemi, 2008). Some of these techniques,
namely strand displacement amplification, nicking-enzyme amplification reaction, rolling circle amplification, loop-
mediated isothermal amplification (LAMP), and helicase-dependent amplification (HDA) have already been used for
GMO testing (Morisset et al., 2008a). However, only LAMP and HDA have given interesting results for GMO analysis
(Zahradnik et al., 2014), LAMP being the most used isothermal amplification technique.

LAMP requires the use of a DNA polymerase with strand displacement activity (generally the thermostable Bst DNA
polymerase large fragment) and two sets of specifically designed primers (inner and outer primers) to recognize a total of
six distinct sequences of the target DNA. First proposed by Notomi et al. (2000), LAMP is initiated by the annealing of
an inner primer containing sequences of both the sense and antisense strands of the target DNA. After inner primer exten-
sion, the outer primer binds upstream the inner primer and is extended by the polymerase, while strand displacement DNA
synthesis leads to the release of a single-stranded DNA. This displaced strand forms a stem—loop structure at 5’ end and
serves as a template for DNA synthesis, now primed by the second inner and outer primers that hybridize on the other end
of the target. This produces a dumbbell-structured DNA that enters cycle amplification. The final products of LAMP are
stem—loop DNA with several inverted repeats of the target and cauliflower-like structures with multiple loops formed by
annealing between alternately inverted repeats of the target in the same strand (Morisset et al., 2008a; Notomi et al., 2000).
Figure 2 shows the principle of LAMP applied to GMO detection.
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FIGURE 2  Schematic representation of loop-mediated isothermal amplification (LAMP). Two inner primers (termed FIP and RIP) and two outer prim-
ers (termed F and R) binding on six different region of the target sequence are used in LAMP. In the initial steps, the reaction starts with the annealing
of the FIP primer on the target sequence. The FIP primer is then extended due to the strand displacement activity of the DNA polymerase (1). The outer
F primer binds upstream of the FIP primer and is extended by the polymerase while displacing the FIP extended product (2). The released FIP-extended
product forms a loop due to the hybridization of complementary regions from the target DNA and the FIP primer (2). The inner RIP anneals on this FIP-
extended product (3) and is extended by the polymerase. The outer R primers binds immediately upstream of the RIP primer and its extension leads to
displacement of the RIP-extended product (4). A double-stranded product is then obtained; the single-stranded RIP-extended product is released and will
serve for the cycle amplification phase of LAMP (5). In that phase, the RIP-extended product forms a double loop also termed dumb-bell form. While
this dumbbell structure starts self-primed DNA extension, the FIP primer binds on its complementary region (6) and is extended (7). This FIP-extended
product is released by the strand displacement of the self-primed extended product, which forms a stem-loop DNA (8). The FIP-extended product, that
also harbors a dumbbell form, starts a self-primed extension while the RIP primer binds on its complementary sequence (9) and starts primer extension
(10). The simultaneous extension of RIP primer and FIP-extended product leads to the release of another stem-loop DNA and the initial dumbbell-shaped
RIP-extended product (11), that will be used for another LAMP cycle. Both stem—loop DNA products released after steps 8 and 11 are used as templates
for primer RIP and FIP extension, as well as self-primed extension of the resulting products. The final LAMP products are stem—loop DNA of various
sizes (12). Reprinted with permission from Morisset et al. (2008a). Copyright 2015, Springer.

Final products
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TABLE 3 Overview of LAMP Application for GMO Detection

LAMP

Target Conditions Monitoring Conditions Sensitivity References
Oilseed rape MS8/RF3 55°C/2h Agarose gel electrophoresis 0.01% GMO (T-NOS, Lee et al. (2009)
(P-35S, P-NOS, T-NOS, P-355)
event-specific junction)
Maize CBH351 (SSllb, 65 °C/60 min Electrochemical 3 x 102 copies/reaction Ahmed et al. (2009)
event-specific junction)
RR soybean (P-35S, 65 °C/45 min Visual (SYBR green); Agarose gel Up to 107° dilution (~5 Liu et al. (2009)
epsps gene) electrophoresis copies)
Rice KMD1, TT51-1, KF6 63 °C/60min Visual (SYBR green or with hydroxy 0.005% (KF6) Chen et al. (2012b)
(event-specific junction) naphthol blue) 0.01% (KMDT1, TT51-1)
Rice KMD1(cry1Ab gene) 65 °C/60 min Visual (precipitate after centrifug- 3 x 102 copies of Li etal. (2013)

ing; SYBR green); Agarose gel pMD19-cry1Ab plas-

electrophoresis mid DNA
Maize T25 (pat gene) 65 °C/45 min Real-time turbidimeter; visual 5g/kg GMO Xu et al. (2013)

(SYBR green)
Transgenic sugarcane 65 °C/60 min Visual (precipitation; Calcein/Mn?* 43.1 copies of plasmid, Zhou et al. (2014)
(cryTAc gene) complex under UV light; SYBR 1.0ng/mL sugarcane

green) genomic DNA
Maize BVLA 430101 65°C/60min Real-time turbidimetry 30 copies of phytase Huang et al. (2014)
(phytase gene) gene

Cry1Ab, cry1Ac, delta-toxins; epsps, 5-enolpyruvulshikimate-3-phosphate synthase; pat, phosphinothricin N-acetyltransferase (PAT) enzyme; P35S, cauli-
flower mosaic virus promoter; RR, Roundup Ready; P-NOS, Agrobacterium tumefaciens nopaline synthase promoter; SSllb, taxon-specific gene for maize;
T-NOS, Agrobacterium tumefaciens nopaline synthase terminator.

LAMP allows visual monitoring, making this technique inexpensive, simple, and suitable for field applications. Dur-
ing DNA amplification, large amounts of pyrophosphate, produced as a reaction byproduct, react with magnesium and
form a white precipitate that can be used to visually detect positive results (Zhang et al., 2014). Naked eye monitoring of
LAMP can also be performed by means of DNA-binding fluorescent dyes, such as SYBR Green I that turns from orange
to green when binding to double stranded DNA. Table 3 summarizes different LAMP-based strategies applied to GMO
detection. Although SYBR Green I has been reported to increase sensitivity, compared with visual turbidity measurements,
it increases the reaction cost and the risk of contamination due to the addition of dye at the end of LAMP (Zhang et al.,
2014). To overcome this shortcoming, Zhang et al. (2013) developed a system for GMO screening and identification (rice,
soybean, and maize), which included a microcrystalline wax bead encapsulating SYBR green fluorescent dye. The bead
was destroyed by incubation at 85 °C after LAMP, liberating the dye that allowed visual detection of color and simultane-
ously avoided dye inhibition and cross-contamination (Zhang et al., 2013). The simplicity and low cost of visual detection
are determinant features of in-field applications, but providing only qualitative results, a limitation in GMO analysis. Other
described LAMP monitoring strategies include gel electrophoresis, real-time turbidimetry, real-time fluorescence, and elec-
trochemical biosensors (Table 3). Agarose gel electrophoresis of LAMP products generate a characteristic multiple band
pattern that allows unequivocal identification of positive results, but without quantification. Real-time turbidity measure-
ments of LAMP performed with simple equipment can be used for quantitative purposes (Mori et al., 2004). LAMP with
fluorescence has also been described as a possibility for real-time monitoring, allowing the quantification of target genes
(Huang et al., 2014; Zhang et al., 2014), though, to the best of our knowledge, GMO quantitative applications are still very
scarce. The most commonly cited disadvantage of LAMP regards the complicated design of multiple primers to cover six
regions of the target DNA.

FINAL REMARKS

In response to the growing diversity of GMO on the market, the need for screening and specific methods has led to new ana-
lytical advances. To address the requirement for real-time and high-throughput GMO monitoring, biosensors, in particular,
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electrochemical genosensors have demonstrated their usefulness. Biosensors can provide rapid, low-cost, sensitive, and
specific measurements suitable for in-field analysis. The efficiency of GMO diagnostics could be improved by analyzing
several targets simultaneously, which is presently being exploited using the microarray platforms. The ability to multiplex
greatly expands the power of genosensor analysis. Therefore, there is a vast potential market for biosensor applications that
has just began to be exploited.

Although a remarkable success in biosensor technology for GMO testing has been reached, true applicability to CRM
or real food samples is still at a preliminary stage as they mostly rely on synthetic DNA recognition. Besides the reported
low detection limits, much effort is also required to increase actual sensitivity that depends on PCR efficiency. As promising
alternatives to conventional PCR, isothermal amplification strategies such as LAMP are especially suitable for in-field use
and are low-cost, enabling visual and electrochemical detection.

Despite the advantages of the described novel approaches, one major drawback regards the lack of true quantitative
analysis as GMO content should be determined in relation to a taxon-specific gene and not simply as an absolute estimation
of marker sequences.
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